## ANTI-[3.3] METACYCLOPHANE QUINHYDRONES:

SYNTHESIS, CHARGE-TRANSFER ABSORPTION AND THERMAL REARRANGEMENT TO SYN-STEREO-

ISOMERS 1)

Heinz A. Staab \* and Annelie Döhling

Abteilung Organische Chemie Max-Planck-Institut für medizinische Forschung Jahnstrasse 29, D-6900 Heidelberg

The synthesis of anti-[3.3] metacyclophane quinhydrones and their thermal rearrangement to <u>syn</u>-stereoisomers are described. Charge-transfer absorptions are discussed under the aspect of different donor-acceptor orientations.

We recently reported on the synthesis of <u>syn-[3.3]metacyclophane</u> quinhydrones starting from <u>syn-6,9,15,18-tetramethoxy[3.3]metacyclophane</u><sup>1)</sup>. From the corresponding <u>anti-tetramethoxy[3.3]metacyclophane</u>, too, via thorough demethylation, oxidation to the bis(quinone) and catalytic hydrogenation only <u>syn-[3.3]metacyclophane</u> quinhydrone was obtained whereas partial demethylation and subsequent oxidation yielded a compound the elemental composition and the <sup>1</sup>H-NMR absorption of which were compatible with the structure of <u>anti-15,18-dimethoxy[3](2,6)-p-benzoquinono[3]metacyclophane (2)<sup>1)</sup>. On the basis of mass spectra, however, the structure of the isomeric quinol 1 had to be adopted the formation of which consists also with the reaction conditions mentioned.</u>



The true <u>anti</u>-15,18-dimethoxy[3](2,6)-p-benzoquinono[3]metacyclophane ( $\underline{2}$ ) was now obtained from <u>anti</u>-6,9,15,18-tetramethoxy[3.3]metacyclophane <sup>1)</sup> by 2019 partial demethylation with chlorotrimethylsilane/sodium iodide in acetonitrile (5 h, 40<sup>°</sup> C) and subsequent oxidation with silver oxide in acetone (30 % yield). The structure of  $\frac{2}{2}$  (orange platelets, m.p. 136<sup>°</sup> C) is supported by <sup>1</sup>H-NMR [ $\delta$  = 1.5 - 3.0 (m, 12 H), 3.40 (s, 3 H), 3.82 (s, 3 H), 6.46 (s, 2 H) 6.55 (s, 2 H), CDCl<sub>3</sub>] and the mass spectrum which for  $\frac{2}{2}$ , in contrast to  $\frac{1}{2}$ , shows close similarity to that of the <u>syn</u>-stereoisomer  $\frac{3}{2}$  described previously <sup>1</sup>) [m/e = 326 (M<sup>+</sup>, 100 %), 164 (7), 162 (9), 149 (8), 136 (5)].



As can be followed by recording the <sup>1</sup>H-NMR spectra in  $[D_6]$  dimethylsulfoxide at 120° C, 2 on heating rearranges completely to the <u>syn</u>-stereoisomer 3 <sup>1)</sup>. Considering the strong sterical strain in 3 (evident from ring deformations and short transanular distances as determined by X-ray analysis <sup>2)</sup> and the sterically less crowded structure of 2 the complete isomerisation 2 (<u>anti</u>) ->3 (<u>syn</u>) suggests a considerably stronger ground state stabilisation by electron-donor-acceptor interactions for 3 than for 2. This result agrees well with MO-calculations on CT ground state stabilisation of quinhydrone <sup>3)</sup> according to which a parallel-translocated donor-acceptor arrangement as in 2 would result in only about 50 % of the ground state stabilisation present in the ecliptic face-to-face arrangement which is closely approximated in 3.

In contrast to the strong orientation dependence found for pseudogeminal and pseudo-ortho paracyclophane quinhydrones  $^{(4)}$ , the CT absorptions of the <u>syn-anti</u> isomers 2 and 3 are, in spite of the very different donor-acceptor overlap, surprisingly similar in wavelength and band shape (fig.). The CT absorption intensity is found to be significantly higher for the <u>anti</u>-isomer  $\frac{2}{2}$  than for the <u>syn</u>-compound  $\frac{3}{2}$  [ $\frac{2}{2}$ :  $\lambda_{max} = 402$  nm ( $\varepsilon$  3230),  $\frac{3}{2}$ : 402 (2670), in chloroform;  $\frac{2}{2}$ : 387 (3410), 388 (2520), in dioxane]. MO-calculations of transition energies and transition moments <sup>5</sup>) so far do not account satisfactorily for the experimental absorption wavelengths and intensities of  $\frac{2}{2}$  and  $\frac{3}{2}$ . As is clearly demonstrated by the pair of stereoisomers  $\frac{2}{2}$  and  $\frac{3}{2}$  there exists no general correlation between ground state stabilisation by electron donor-acceptor interaction and the wavelengths and/or the intensities of CT absorptions which frequently has been taken for granted.



Fig. CT absorption of  $\frac{2}{2}$  and  $\frac{3}{2}$  (in chloroform)

In addition to  $\underline{2}$ , by partial demethylation of <u>anti</u>-6,9,15,18-tetramethoxy[3.3]metacyclophane and subsequent oxidation, an <u>anti</u>-[3.3]metacyclophane quinhydrone monomethylether was obtained (red needles; m.p. 190<sup>°</sup> C, dec.). <sup>1</sup>H-NMR data [ $\delta$  = 1.9-3.0 (m, 12 H), 3.38 (s, 3 H), 6.45 (s, 2 H), 6.49 (s, 2 H), CDCl<sub>3</sub>] support the structure of <u>anti</u>-15-hydroxy-18-methoxy-[3](2,6)-p-benzoquinono[3]metacyclophane ( $\frac{4}{2}$ ). Under similar conditions as with  $\frac{2}{2}$  a complete thermal isomerisation of  $\frac{4}{2}$  is observed yielding the corresponding <u>syn</u>-isomer  $\frac{5}{2}$  [orange-red crystals; m.p. 240° C, dec.; <sup>1</sup>H-NMR:  $\delta \approx$ 1.5-3.1 (m, 12 H), 3.57 (s, 3 H), 6.00 (s, 2 H), 6.33 (s, 2 H), CDCl<sub>3</sub>].  $\frac{4}{2}$ and  $\frac{5}{2}$  form a second set of <u>syn-anti</u>-isomeric [3.3]metacyclophane quinhydrones the ground state stability ratio as well as the CT absorptions of which correspond very much to those of the pair  $\frac{2}{3}$  [ $\frac{4}{2}$ :  $\lambda_{max} = 393$  nm ( $\varepsilon$  3390);  $\frac{5}{2}$ : 394 (2430), in dioxane].



- Electron-Donor-Acceptor Compounds, Part 22. Part 23: H. A. Staab,
   C. P. Herz and A. Döhling, <u>Tetrahedron Lett.</u> <u>1979</u>, 791.
- 2) H. A. Staab, C. P. Herz, A. Döhling and C. Krieger, Chem. Ber. (in press)
- 3) B. Mayoh and C. K. Prout, <u>J. Chem. Soc., Faraday Trans. II</u> <u>1972</u>, 1072.
- 4) W. Rebafka and H. A. Staab, <u>Angew. Chem. Int. Ed. Engl.</u> <u>12</u>, 776 (1973);
  <u>13</u>, 203 (1974); H. A. Staab and W. Rebafka, <u>Chem. Ber.</u> <u>110</u>, 3333 (1977);
  H. A. Staab, C. P. Herz and H.-E. Henke, ibid. <u>110</u>, 3351 (1977); H. A. Staab and C. P. Herz, <u>Angew. Chem. Int. Ed. Engl.</u> <u>16</u>, 799 (1977).
- 5) H. Vogler, unpublished.

(Received in Germany 27 March 1979)